Multi-proxy record of the Austrian Upper Triassic Polzberg Konservat-Lagerstätte in light of the Carnian Pluvial Episode

Author:

Lukeneder Alexander,Lukeneder Petra,Sachsenhofer Reinhard F.,Roghi Guido,Rigo Manuel

Abstract

AbstractWe present a multi-proxy investigation of a lower Carnian basinal succession from Polzberg in the Northern Calcareous Alps (Lower Austria). A section comprising a unique Konservat-Lagerstätte was studied based on bio- and chemostratigraphy along with geophysical methods, yielding a detailed and robust stratigraphic calibration of the Polzberg succession. The Polzberg section revealed the paleoceanographic history and helped to identify a global climatic reversal, the Carnian Pluvial Episode. The age of the Upper Triassic Reingraben formation in the Northern Calcareous Alps is refined as the Austrotrachyceras austriacum Zone within the lower Carnian (Julian 2). Ammonoids and conodonts provide a detailed biostratigraphic subdivision that serves as a basis for analyses of the faunal distribution and the paleoenvironmental evolution of the Upper Triassic Reifling Basin. The succession includes lithological and facies changes similar to those of coeval units in the Tethys. The Carnian was characterized by a weak (~ 1‰) positive δ13C trend, punctuated by a negative shift during the lower Carnian corresponding to the initiation of the Carnian Pluvial Episode, a period representing the onset of early/late Carnian transitional global greenhouse conditions. Organic maturity parameters and the conodont alteration index (CAI) show that the thermal overprint of the Polzberg section is low. Biomarker proxies suggest that the organic matter of the uppermost Göstling formation is a mixture of marine and terrestrial material deposited in a dysoxic environment. Within the overlaying Reingraben formation, the amount of marine biomass decreased gradually upwards. Oxygen-depleted conditions, probably due to water-column stratification, continued during deposition of the Reingraben formation. Bacterial sulfate reduction played a major role in organic matter degradation.

Funder

Federal Government of Lower Austria

Freunde des Naturhistorischen Museums Wien

Italian Ministry of University and Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3