Author:
Amoroso Nicola,Bellantuono Loredana,Pascazio Saverio,Lombardi Angela,Monaco Alfonso,Tangaro Sabina,Bellotti Roberto
Abstract
AbstractWe propose a characterization of complex networks, based on the potential of an associated Schrödinger equation. The potential is designed so that the energy spectrum of the Schrödinger equation coincides with the graph spectrum of the normalized Laplacian. Crucial information is retained in the reconstructed potential, which provides a compact representation of the properties of the network structure. The median potential over several random network realizations, which we call ensemble potential, is fitted via a Landau-like function, and its length scale is found to diverge as the critical connection probability is approached from above. The ruggedness of the ensemble potential profile is quantified by using the Higuchi fractal dimension, which displays a maximum at the critical connection probability. This demonstrates that this technique can be successfully employed in the study of random networks, as an alternative indicator of the percolation phase transition. We apply the proposed approach to the investigation of real-world networks describing infrastructures (US power grid). Curiously, although no notion of phase transition can be given for such networks, the fractality of the ensemble potential displays signatures of criticality. We also show that standard techniques (such as the scaling features of the largest connected component) do not detect any signature or remnant of criticality.
Funder
Instituto Nazionale di Fisica Nucleare
MIUR via PRIN 2017 (Progetto di Ricerca di Interesse Nazionale), project QUSHIP
Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献