Application and performance of a Low Power Wide Area Sensor Network for distributed remote hydrological measurements

Author:

Ketcheson Scott J.ORCID,Golubev Vitaly,Illing David,Chambers Bruce,Foisy Sheldon

Abstract

AbstractCommunication distances of wireless sensor networks (WSNs) are greatly limited in settings where vegetation coverage is moderate or dense, and power consumption can be an issue in remote environmental settings. A newer innovative technology called “Low Power Wide Area Sensor Networks” (LPWAN) is capable of greater communication distances while consuming less power than traditional WSNs. This research evaluates the design and in-field performance of a LPWAN configuration in headwater catchments to measure environmental variables. The performance of the Beta LPWAN deployment indicate reduced signal strength in topographic valleys, but better actual than modelled data transmission performance. System performance during extreme cold temperatures (below – 15 ºC) resulted in increased sensor down time. The configuration of antennae combinations provides the greatest improvement in signal strength and system performance. This technology facilitates remote collection of physically-based, spatially-distributed information within regions with limited accessibility, ultimately advancing data collection capabilities into areas that are not feasible to visit regularly.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Athabasca University Academic Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3