A comprehensive study on the fire resistance properties of ultra-fine ceramic waste-filled high alkaline white cement paste composites for progressing towards sustainability

Author:

Abdelzaher M. A.ORCID,Hamouda Asmaa S.,El-Kattan Ibrahim M.

Abstract

AbstractThe most practical sustainable development options to safeguard the local ecology involve reducing the use of raw materials and guaranteeing proper recycling of the principal destroyed solid wastes. Preventing the creation of hazardous waste and the subsequent pollution that results from improper disposal is a top priority. Based on this, the study's authors recommend reusing the ultra-fine ceramic shards (CW). High-alkaline white cement (WC) has been partially replaced by ultra-fine CW because it is a cheaper, more abundant, and more lasting environmental material used in the production of trendy blended white cement pastes composites. In this context, we look at ultra-fine CW, a material that has been suggested for use as a hydraulic filler due to its high performance, physicomechanical qualities, and durability. XRF, XRD, FTIR, and SEM measurements are used to characterize the microstructure, thermal characteristics, and thermodynamics. Because of the effect of ultra-fine ceramic waste, the firing test reduces the mechanical strength by default, but with active filler, decreases slowly and increase its physicomechanical features and compressive strength compared to the control sample (WC), setting a new benchmark. The maximum amount of crystallization formed in the presence of ultra-fine ceramic waste in WC-matrix, resulting in a decrease in total porosity and early cracking. Together, the improved workability and energy-saving features of cement blends with ultra-fine ceramic waste, reflect their economic and environmental benefits, which may reduce building costs and boost the durability of the raw materials used in the mix.

Funder

Open access agreement for Egypt

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3