Author:
Tarek Zahraa,Elhoseny Mohamed,Alghamdi Mohamemd I.,EL-Hasnony Ibrahim M.
Abstract
AbstractThe world's population is expected to exceed 9 billion people by 2050, necessitating a 70% increase in agricultural output and food production to meet the demand. Due to resource shortages, climate change, the COVID-19 pandemic, and highly harsh socioeconomic predictions, such a demand is challenging to complete without using computation and forecasting methods. Machine learning has grown with big data and high-performance computers technologies to open up new data-intensive scientific opportunities in the multidisciplinary agri-technology area. Throughout the plant's developmental period, diseases and pests are natural disasters, from seed production to seedling growth. This paper introduces an early diagnosis framework for plant diseases based on fog computing and edge environment by IoT sensors measurements and communication technologies. The effectiveness of employing pre-trained CNN architectures as feature extractors in identifying plant illnesses has been studied. As feature extractors, standard pre-trained CNN models, AlexNet are employed. The obtained in-depth features are eliminated by proposing a revised version of the grey wolf optimization (GWO) algorithm that approved its efficiency through experiments. The features subset selected were used to train the SVM classifier. Ten datasets for different plants are utilized to assess the proposed model. According to the findings, the proposed model achieved better outcomes for all used datasets. As an average for all datasets, the accuracy of the proposed model is 93.84 compared to 85.49, 87.89, 87.04 for AlexNet, GoogleNet, and the SVM, respectively.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献