Dynamic ensemble prediction of cognitive performance in spaceflight

Author:

Tu Danni,Basner Mathias,Smith Michael G.,Williams E. Spencer,Ryder Valerie E.,Romoser Amelia A.,Ecker Adrian,Aeschbach Daniel,Stahn Alexander C.,Jones Christopher W.,Howard Kia,Kaizi-Lutu Marc,Dinges David F.,Shou Haochang

Abstract

AbstractDuring spaceflight, astronauts face a unique set of stressors, including microgravity, isolation, and confinement, as well as environmental and operational hazards. These factors can negatively impact sleep, alertness, and neurobehavioral performance, all of which are critical to mission success. In this paper, we predict neurobehavioral performance over the course of a 6-month mission aboard the International Space Station (ISS), using ISS environmental data as well as self-reported and cognitive data collected longitudinally from 24 astronauts. Neurobehavioral performance was repeatedly assessed via a 3-min Psychomotor Vigilance Test (PVT-B) that is highly sensitive to the effects of sleep deprivation. To relate PVT-B performance to time-varying and discordantly-measured environmental, operational, and psychological covariates, we propose an ensemble prediction model comprising of linear mixed effects, random forest, and functional concurrent models. An extensive cross-validation procedure reveals that this ensemble outperforms any one of its components alone. We also identify the most important predictors of PVT-B performance, which include an individual's previous PVT-B performance, reported fatigue and stress, and temperature and radiation dose. This method is broadly applicable to settings where the main goal is accurate, individualized prediction of human behavior involving a mixture of person-level traits and irregularly measured time series.

Funder

NASA

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3