Author:
Lee Hae-June,Kim Joong-Sun,Moon Changjong,Son Yeonghoon
Abstract
AbstractAlthough the brain is exposed to cranial irradiation in many clinical contexts, including malignant brain tumor therapy, such exposure can cause delayed neuropsychiatric disorders in the chronic phase. However, how specific molecular mechanisms are associated with irradiation-induced behavioral dysfunction, especially anxiety-like behaviors, is unclear. In the present study, we evaluated anxiety-like behaviors in adult C57BL/6 mice using the open-field (OF) and elevated plus maze (EPM) tests 3 months following single cranial irradiation (10 Gy). Additionally, by using RNA sequencing (RNA-seq), we analyzed gene expression profiles in the cortex and hippocampus of the adult brain to demonstrate the molecular mechanisms of radiation-induced brain dysfunction. In the OF and EPM tests, mice treated with radiation exhibited increased anxiety-like behaviors in the chronic phase. Gene expression analysis by RNA-seq revealed 89 and 106 differentially expressed genes in the cortex and hippocampus, respectively, following cranial irradiation. Subsequently, ClueGO and STRING analyses clustered these genes in pathways related to protein kinase activity, circadian behavior, and cell differentiation. Based on our expression analysis, we suggest that behavioral dysfunction following cranial irradiation is associated with altered expression of Cdkn1a, Ciart, Fos, Hspa5, Hspb1 and Klf10. These novel findings may provide potential genetic targets to investigate for the development of radioprotective agents.
Funder
Korea Institute of Radiological and Medical Sciences
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献