Author:
Gargari Sahar Andarzi,Barzegar Abolfazl
Abstract
AbstractStructural studies of the aggregation inhibition of the amyloid-β peptide (Aβ) by different natural compounds are of the utmost importance due to their great potential as neuroprotective and therapeutic agents for Alzheimer’s disease. We provided the simulation of molecular dynamics for two different states of Aβ42, including “monomeric aggregation-prone state (APS)” and “U-shaped pentamers of amyloidogenic protofilament intermediates” in the absence and presence of polyphenolic flavonoids (Flvs, myricetin and morin) in order to verify the possible mechanism of Flvs fibrillogenesis suppression. Data showed that Flvs directly bind into Aβ42 species in both states of “monomeric APS β-sheets” and “pentameric amyloidogenic intermediates”. Binding of Flvs with amyloidogenic protofilament intermediates caused the attenuation of some inter-chains H-bonds, salt bridges, van der Waals and interpeptide interaction energies without interfering with their secondary β-sheets. Therefore, Flvs redirect oligomeric amyloidogenic intermediates into unstructured aggregates by significant disruption of the "steric zipper" motif of fibrils—pairs of self-complementary β-sheets—without changing the amount of β-sheets. It is while Flvs completely destruct the disadvantageous secondary β-sheets of monomeric APS conformers by converting them into coil/helix structures. It means that Flvs suppress the fibrillogenesis process of the monomeric APS structures by converting their β-sheets into proper soluble coil/helices structures. The different actions of Flvs in contact with two different states of Aβ conformers are related to high interaction tendency of Flvs with additional H-bonds for monomeric APS β-sheet, rather than oligomeric protofilaments. Linear interaction energy (LIE) analysis confirmed the strong binding of monomeric Aβ-Flvs with more negative ∆Gbinding, rather than oligomeric Aβ-Flvs system. Therefore, atomic scale computational evaluation of Flvs actions demonstrated different dual functions of Flvs, concluded from the application of two different monomeric and pentameric Aβ42 systems. The distinct dual functions of Flvs are proposed as suppressing the aggregation by converting β-sheets of monomeric APS to proper soluble structures and disrupting the "steric zipper" fibril motifs of oligomeric intermediate by converting on-pathway into off-pathway. Taken together, our data propose that Flvs exert dual and more effective functions against monomeric APS (fibrillogenesis suppression) and remodel the Aβ aggregation pathway (fibril destabilization).
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Lobello, K., Ryan, J. M., Liu, E., Rippon, G. & Black, R. Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int. J. Alzheimer’s Dis. 2012, 628070 (2012).
2. Hamley, I. W. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 112, 5147–5192 (2012).
3. Harrington, C. R. The molecular pathology of Alzheimer’s disease. Neuroimaging Clin. N. Am. 22, 11–22 (2012).
4. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).
5. Acar, H. et al. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliv. Rev. 110, 65–79 (2017).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献