Development and validation of a novel disulfidptosis-related lncRNAs signature in patients with HPV-negative oral squamous cell carcinoma

Author:

Yang Fan,Niu Xinyu,Zhou Mingzhu,Li Wei

Abstract

AbstractDisulfidptosis is a recently identified mode of regulated cell death. Regulating disulfidptosis in carcinoma is a promising therapeutic approach. Long non-coding RNAs (lncRNAs) have been reported to be related to the occurrence and development of many cancers. Disulfidptosis-related lncRNAs (DRLs) in HPV-negative oral squamous cell carcinoma (OSCC) have not been studied. Based on The Cancer Genome Atlas (TCGA) database, least absolute shrinkage selection operator (LASSO) analysis and Cox regression analysis were used to identify overall survival related DRLs and construct the signature. Kaplan–Meier, time-dependent receiver operating characteristics (ROC) and principal component analyses (PCA) were explored to demonstrate the prediction potential of the signature. Subgroup analysis stratified by different clinicopathological characteristics were conducted. Nomogram was established by DRLs signature and independent clinicopathological characteristics. The calibration plots were performed to reveal the accuracy of nomogram. Immune cell subset infiltration, immunotherapy response, drug sensitivity analysis, and tumor mutation burden (TMB) were conducted. Underlying functions and pathways were explored by Gene Set Enrichment Analysis (GSEA) analysis. Previous lncRNA signatures of OSCC were retrieved from PubMed for further validation. Gene expression omnibus (GEO) datasets (GSE41613 and GSE85446) were merged as an external validation for DRLs signature. Consensus clustering analysis of DRLs signature and experimental validation of DRLs were also explored. This research sheds light on the robust performance of DRLs signature in survival prediction, immune cell infiltration, immune escape, and immunotherapy of HPV-negative OSCC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3