Effect of bubble size on ultrasound backscatter from bubble clouds in the context of gas kick detection in boreholes

Author:

Indimath ShivanandanORCID,Fiorentini Stefano,Bøklepp Bjarne Rosvoll,Avdal Jørgen,Johansen Tonni Franke,Måsøy Svein-Erik

Abstract

AbstractEarly detection of gas influx in boreholes while drilling is of significant interest to drilling operators. Several studies suggest a good correlation between ultrasound backscatter/attenuation and gas volume fraction (GVF) in drilling muds, and thereby propose methods for quantification of GVF in boreholes. However, the aforementioned studies neglect the influence of bubble size, which can vary significantly over time. This paper proposes a model to combine existing theories for ultrasound backscatter from bubbles depending on their size, viz. Rayleigh scattering for smaller bubbles, and specular reflection for larger bubbles. The proposed model is demonstrated using simulations and experiments, where the ultrasound backscatter is evaluated from bubble clouds of varying bubbles sizes. It is shown that the size and number of bubbles strongly influence ultrasound backscatter intensity, and it is correlated to GVF only when the bubble size distribution is known. The information on bubble size is difficult to obtain in field conditions causing this correlation to break down. Consequently, it is difficult to reliably apply methods based on ultrasound backscatter, and by extension its attenuation, for the quantification of GVF during influx events in a borehole. These methods can however be applied as highly sensitive detectors of gas bubbles for GVF $$\ge$$ 1 vol$$\%$$ % .

Funder

Norges Forskningsr åd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3