Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals

Author:

Zeng Huiping,Zhai Longxue,Qiao Tongda,Yu Yaping,Zhang Jie,Li Dong

Abstract

AbstractTwo types of magnetic nanoparticles prepared with chemical agents (cMNP) and iron-containing sludge (iMNP), respectively, were synthesized by co-precipitation process and used to remove arsenate [As(V)] from water. The synthesized magnetic adsorbents were characterized by XRD, XPS, TEM, BET, VSM and FTIR. The adsorbents iMNP and cMNP were both mainly γ-Fe2O3 in nanoscale particles with the saturation magnetization of 35.5 and 69.0 emu/g respectively and could be easily separated from water with a simple hand-held magnet in 2 minutes. At pH 6.6, over 90% of As(V), about 400 μg/L, could be removed by both adsorbents (0.2 g/L) within 60 min. The adsorption isotherm of both fabricated materials could be better described by the Langmuir adsorption isotherm model than the Freundlich’s, In addition, the adsorption kinetics of both adsorbents described well by the pseudo-second order model revealed that the intraparticle diffusion was not just the only rate controlling step in adsorption process. With the larger maximum As(V) adsorption capacity of iMNP (12.74 mg/g), compared with that of cMNP (11.76 mg/g), the iMNP could be regarded as an environmentally friendly substitute for the traditional magnetic nanoparticles prepared with chemical agents.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3