Physics-informed deep learning to forecast $${\widehat{{\varvec{M}}}}_{{\varvec{m}}{\varvec{a}}{\varvec{x}}}$$ during hydraulic fracturing

Author:

Li Ziyan,Eaton David W.,Davidsen Jörn

Abstract

AbstractShort-term forecasting of estimated maximum magnitude ($${\widehat{M}}_{max}$$ M ^ max ) is crucial to mitigate risks of induced seismicity during fluid stimulation. Most previous methods require real-time injection data, which are not always available. This study proposes two deep learning (DL) approaches, along with two data-partitioning methods, that rely solely on preceding patterns of seismicity. The first approach forecasts $${\widehat{M}}_{max}$$ M ^ max directly using DL; the second incorporates physical constraints by using DL to forecast seismicity rate, which is then used to estimate $${\widehat{M}}_{max}$$ M ^ max . These approaches are tested using a hydraulic-fracture monitoring dataset from western Canada. We find that direct DL learns from previous seismicity patterns to provide an accurate forecast, albeit with a time lag that limits its practical utility. The physics-informed approach accurately forecasts changes in seismicity rate, but sometimes under- (or over-) estimates $${\widehat{M}}_{max}$$ M ^ max . We propose that significant exceedance of $${\widehat{M}}_{max}$$ M ^ max may herald the onset of runaway fault rupture.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3