Author:
Zhang Gaosheng,Luo Jinglin,Cao Hanlin,Hu Shengping,Li Huosheng,Wu Zhijing,Xie Yuan,Li Xiangping
Abstract
AbstractIn this study, amorphous hydrous titanium dioxide was synthesized by a facile precipitation method at room temperature, aiming to effectively remove thallium(I) from water. The titanium dioxide prepared using ammonia as precipitant (TiO2I) is more effective for thallium(I) uptake than the one synthesized with sodium hydroxide (TiO2II). The TiO2 obtained particles are amorphous, aggregates of many nanoparticles and irregular in shape. The thallium(I) uptake increases with the rise of solution pH value. Under neutral pH conditions, the maximal thallium(I) adsorption capacities of TiO2I and TiO2II are 302.6 and 230.3 mg/g, respectively, outperforming most of the reported adsorbents. The amorphous TiO2 has high selectivity towards thallium(I) in the presence of multiple cations such as K+, Ca2+, Mg2+, Zn2+ and Ni2+. Moreover, the TiO2I is efficient in removing thallium(I) from real river water and mining wastewater. Additionally, the spent TiO2I can be regenerated using hydrochloric acid solution and reused. The Tl(I) adsorption is achieved via replacing the H+ in hydroxyl group on the surface of TiO2 and forming inner-sphere surface complexes. Owing to its high efficiency, facile synthesis and environmental friendliness, the TiO2I has the potential to be used as an alternative adsorbent to remove Tl(I) from water.
Funder
National Natural Science Foundation of China
Research Fund Program of Guangdong Key Laboratory of Radioactive and Rare Resource Utilization
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献