Targeted gene expression profiling for accurate endometrial receptivity testing

Author:

Meltsov AlvinORCID,Saare MerliORCID,Teder HindrekORCID,Paluoja PriitORCID,Arffman Riikka K.ORCID,Piltonen TerhiORCID,Laudanski PiotrORCID,Wielgoś MirosławORCID,Gianaroli LucaORCID,Koel MariannORCID,Peters MaireORCID,Salumets AndresORCID,Krjutškov KaarelORCID,Palta PriitORCID

Abstract

AbstractExpressional profiling of the endometrium enables the personalised timing of the window of implantation (WOI). This study presents and evaluates a novel analytical pipeline based on a TAC-seq (Targeted Allele Counting by sequencing) method for endometrial dating. The expressional profiles were clustered, and differential expression analysis was performed on the model development group, using 63 endometrial biopsies spanning over proliferative (PE, n = 18), early-secretory (ESE, n = 18), mid-secretory (MSE, n = 17) and late-secretory (LSE, n = 10) endometrial phases of the natural cycle. A quantitative predictor model was trained on the development group and validated on sequenced samples from healthy women, consisting of 52 paired samples taken from ESE and MSE phases and five LSE phase samples from 31 individuals. Finally, the developed test was applied to 44 MSE phase samples from a study group of patients diagnosed with recurrent implantation failure (RIF). In validation samples (n = 57), we detected displaced WOI in 1.8% of the samples from fertile women. In the RIF study group, we detected a significantly higher proportion of the samples with shifted WOI than in the validation set of samples from fertile women, 15.9% and 1.8% (p = 0.012), respectively. The developed model was evaluated with an average cross-validation accuracy of 98.8% and an accuracy of 98.2% in the validation group. The developed beREADY screening model enables sensitive and dynamic detection of selected transcriptome biomarkers, providing a quantitative and accurate prediction of endometrial receptivity status.

Funder

Enterprise Estonia

Estonian Research Council

Polish Ministry of Health

Horizon 2020 innovation grant

EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3