Comparative study of TiO2–Fe3O4 photocatalysts synthesized by conventional and microwave methods for metronidazole removal

Author:

Kubiak Adam

Abstract

AbstractThis study focused on a direct comparison of conventional hydrothermal and microwave treatment during the synthesis of TiO2–Fe3O4 photocatalyst, which is an effective catalyst for decomposing metronidazole. The photocatalyst underwent various characterization analyses, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray, and diffuse reflectance spectroscopy. The Raman spectroscopy analysis revealed that the materials obtained through the conventional hydrothermal treatment consisted of separate phases of anatase and magnetite. On the other hand, the materials synthesized using the microwave process showed a noticeable shift in the Eg band (143 cm−1) and its half-width towards higher wavenumbers. This shift is likely due to the introduction of Fe ions into the TiO2 lattice. Additionally, both conventional hydrothermal and microwave synthesis routes produced TiO2–Fe3O4 systems with superparamagnetic properties, as demonstrated by SQUID magnetic measurements. The TEM analysis revealed that the materials synthesized using the microwave process exhibited higher homogeneity, with no noticeable large aggregates observed. Finally, this work proposed a convenient LED photoreactor that effectively utilized the photo-oxidative properties of TiO2–Fe3O4 photocatalysts to remove metronidazole. Combining photoactive TiO2–Fe3O4 catalysts with an energy-efficient LED reactor resulted in a low electrical energy per order (EEO).

Funder

National Science Centre of Poland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3