A Markov network approach for reproducing purchase behaviours observed in convenience stores

Author:

Johansson Dan,Takayasu Hideki,Takayasu Misako

Abstract

AbstractThe convenience store industry in Japan holds immense significance, making a thorough comprehension of customer purchase behaviour invaluable for companies aiming to gain insights into their customer base. In this paper, we propose a novel application of a Markov network model to simulate purchases guided by stopping probabilities calculated from real data. Each node in the Markov network represents different product categories available for purchase. Additionally, we introduce the concept of a “driving force,” quantifying the influence of purchasing product A on the likelihood of purchasing product B, compared to random purchasing. For instance, our analysis reveals that the inclusion of nutrient bars in a purchase set leads to, on average, a 13% reduction in tobacco purchases compared to random patterns. To validate our approach, we compare the simulated macro-level purchase behaviours with real point of Sale (POS) data obtained from a prominent convenience store giant, 7-Eleven. The dataset is comprised of roughly 54 million receipts, in which we focus on the product categories existing in this dataset rather than individual products. Our model successfully replicates the purchase size distribution for 99.9% of all purchases and the purchase counts across various product categories, demonstrating its efficacy in capturing broad purchase patterns.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3