Machine learning reduces soft costs for residential solar photovoltaics

Author:

Dong Changgui,Nemet Gregory,Gao Xue,Barbose Galen,Sigrin Benjamin,O’Shaughnessy Eric

Abstract

AbstractFurther deployment of rooftop solar photovoltaics (PV) hinges on the reduction of soft (non-hardware) costs—now larger and more resistant to reductions than hardware costs. The largest portion of these soft costs is the expenses solar companies incur to acquire new customers. In this study, we demonstrate the value of a shift from significance-based methodologies to prediction-oriented models to better identify PV adopters and reduce soft costs. We employ machine learning to predict PV adopters and non-adopters, and compare its prediction performance with logistic regression, the dominant significance-based method in technology adoption studies. Our results show that machine learning substantially enhances adoption prediction performance: The true positive rate of predicting adopters increased from 66 to 87%, and the true negative rate of predicting non-adopters increased from 75 to 88%. We attribute the enhanced performance to complex variable interactions and nonlinear effects incorporated by machine learning. With more accurate predictions, machine learning is able to reduce customer acquisition costs by 15% ($0.07/Watt) and identify new market opportunities for solar companies to expand and diversify their customer bases. Our research methods and findings provide broader implications for the adoption of similar clean energy technologies and related policy challenges such as market growth and energy inequality.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3