Optical vortex beam controlling based on fork grating stored in a dye-doped liquid crystal cell

Author:

Soleimani P.,Khoshsima H.,Yeganeh M.

Abstract

AbstractIn this paper, we investigate the generation and controlling of the optical vortex beam using a dye-doped liquid crystal (DDLC) cell. The spatial distribution of the quasi-sinusoidal orientation of the liquid crystal molecules creates a quasi-sinusoidal phase grating (PG) in the DDLC cell. Depending on the incident light pattern, Trans to Cis photoisomerization of the dye molecules affects the orientation of the liquid crystal molecules. To do so, an amplitude fork grating (FG) is used as a mask, and its pattern is stored in the cell by a pattern printing method as the PG. One of the particular features of the stored grating in the cell is its capability in the diffraction efficiency controlled by the applied electric field. The results show, based on the central defect in the FG pattern, the diffracted probe beam in different orders is optical vortices. As a new technique, this type of stored pattern acts like an amplitude grating but according to the results, its structure is in fact a PG. This technique leads to the vortex beam switching capability by applying an electric field to the cell. The results show that by applying 22 V, all the diffraction orders vanish. Meanwhile, the vortex beams reappear by removing the applied voltage. The diffraction efficiency of the vortex beams as well as its generation dependency on the polarization of the incident beam studied. The maximum efficiency of the first diffraction order for linear polarized incident beam was obtained at 0 V, about 8%. Based on the presented theory, a simulation has been done which shows the Cis form of the dye molecules has been able to change the angle of LC molecules on average about 12.7°. The study of diffracted beam profiles proves that they are electrically controllable vortex beams.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3