Discovery of novel CSF biomarkers to predict progression in dementia using machine learning

Author:

Gogishvili DeaORCID,Vromen Eleonora M.,Koppes-den Hertog Sascha,Lemstra Afina W.,Pijnenburg Yolande A. L.ORCID,Visser Pieter JelleORCID,Tijms Betty M.ORCID,Del Campo Marta,Abeln SanneORCID,Teunissen Charlotte E.ORCID,Vermunt LisaORCID

Abstract

AbstractProviding an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques with the aim to identify cerebrospinal fluid (CSF) biomarkers that predict the rate of cognitive decline within dementia patients. First, longitudinal mini-mental state examination scores (MMSE) of 210 dementia patients were used to create fast and slow progression groups. Second, we trained random forest classifiers on CSF proteomic profiles and obtained a well-performing prediction model for the progression group (ROC–AUC = 0.82). As a third step, Shapley values and Gini feature importance measures were used to interpret the model performance and identify top biomarker candidates for predicting the rate of cognitive decline. Finally, we explored the potential for each of the 20 top candidates in internal sensitivity analyses. TNFRSF4 and TGF $$\upbeta $$ β -1 emerged as the top markers, being lower in fast-progressing patients compared to slow-progressing patients. Proteins of which a low concentration was associated with fast progression were enriched for cell signalling and immune response pathways. None of our top markers stood out as strong individual predictors of subsequent cognitive decline. This could be explained by small effect sizes per protein and biological heterogeneity among dementia patients. Taken together, this study presents a novel progression biomarker identification framework and protein leads for personalised prediction of cognitive decline in dementia.

Funder

European Commission, Marie Curie International Training Network

JPND

The Selfridges Group Foundation

Alzheimer Netherlands

attraction talent fellowship of Comunidad de Madrid

I+D+i 2020 projects from the Spanish ministry of science and innovation

Dutch Research Council

Alzheimer Drug Discovery Foundation

Alzheimer Association

Stichting Dioraphte

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3