A deep learning model to classify neoplastic state and tissue origin from transcriptomic data

Author:

Hong James,Hachem Laureen D.,Fehlings Michael G.

Abstract

AbstractApplication of deep learning methods to transcriptomic data has the potential to enhance the accuracy and efficiency of tissue classification and cell state identification. Herein, we developed a multitask deep learning model for tissue classification combining publicly available whole transcriptomic (RNA-seq) datasets of non-neoplastic, neoplastic and peri-neoplastic tissue to classify disease state, tissue origin and neoplastic subclass. RNA-seq data from a total of 10,116 patient samples processed through a common pipeline were used for model training and validation. The model achieved 99% accuracy for disease state classification (ROC-AUC of 0.98) and 97% accuracy for tissue origin (ROC-AUC of 0.99). Moreover, the model achieved an accuracy of 92% (ROC-AUC 0.95) for neoplastic subclassification. This is the first multitask deep learning algorithm developed for tissue classification employing a uniform pipeline analysis of transcriptomic data with multiple tissue classifiers. This model serves as a framework for incorporating large transcriptomic datasets across conditions to facilitate clinical diagnosis and cell-based treatment strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3