Abstract
AbstractAs the core method of cooperative navigation, relative positioning plays a key role in realizing intelligent vehicle driving and vehicle self-assembling network collaboration algorithms. However, when the contamination rate of measurement noise is high, the performance of filtering will be seriously affected. To better address the filtering performance degradation problem due to noise contamination, this paper proposes a vehicular cooperative localization method based on the Maximum Correentropy Robust Square-root Cubature Kalman Filter (MCSCKF). The algorithm not only retains the advantages of Square-root Cubature Kalman Filter (SCKF) but also has strong robustness to non-Gaussian noise. The experimental results of tightly integrated vehicular cooperative navigation show that compared with the Extended Kalman Filter (EKF) and Cubature Kalman Filter (CKF), the localization accuracy of MCSCKF is improved by 35.08% and 31.83%, respectively, which verified the effectiveness in improving the accuracy and robustness of the relative position estimation.
Funder
Liaoning Provincial Applied Basic Research Program
Liaoning University of Engineering and Technology Discipline Innovation Team Funding Project
2021 Liaoning Provincial Undergraduate Teaching Reform Research Project for Ordinary Institutions of Higher Learning
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献