Abstract
AbstractThis study investigates urban recovery from the COVID-19 pandemic by focusing on three main types of working, commercial, and night-life activities and associating them with land use and inherent socio-economic patterns as well as points of interests (POIs). Massive multi-source and multi-scale data include mobile phone signaling data (500 m × 500 m), aerial images (0.49 m × 0.49 m), night light satellite data (500 m × 500 m), land use data (street-block), and POIs data. Methods of convolutional neural network, guided gradient-weighted class activation mapping, bivariate local indicator of spatial association, Elbow and K-means are jointly applied. It is found that the recovery in central areas was slower than in suburbs, especially in terms of working and night-life activities, showing a donut-shaped spatial pattern. Residential areas with mixed land uses seem more resilient to the pandemic shock. More than 60% of open spaces are highly associated with recovery in areas with high-level pre-pandemic social-economic activities. POIs of sports and recreation are crucial to the recovery in all areas, while POIs of transportation and science/culture are also important to the recovery in many areas. Policy implications are discussed from perspectives of open spaces, public facilities, neighborhood units, spatial structures, and anchoring roles of POIs.
Funder
J-RAPID Collaborative Research/Survey Program for Urgent Research
Ethical, Legal, and Social Implications/Issues (ELSI) Research
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献