Accelerating computer vision-based human identification through the integration of deep learning-based age estimation from 2 to 89 years

Author:

Heinrich Andreas

Abstract

AbstractComputer Vision (CV)-based human identification using orthopantomograms (OPGs) has the potential to identify unknown deceased individuals by comparing postmortem OPGs with a comprehensive antemortem CV database. However, the growing size of the CV database leads to longer processing times. This study aims to develop a standardized and reliable Convolutional Neural Network (CNN) for age estimation using OPGs and integrate it into the CV-based human identification process. The CNN was trained on 50,000 OPGs, each labeled with ages ranging from 2 to 89 years. Testing included three postmortem OPGs, 10,779 antemortem OPGs, and an additional set of 70 OPGs within the context of CV-based human identification. Integrating the CNN for age estimation into CV-based human identification process resulted in a substantial reduction of up to 96% in processing time for a CV database containing 105,251 entries. Age estimation accuracy varied between postmortem and antemortem OPGs, with a mean absolute error (MAE) of 2.76 ± 2.67 years and 3.26 ± 3.06 years across all ages, as well as 3.69 ± 3.14 years for an additional 70 OPGs. In conclusion, the incorporation of a CNN for age estimation in the CV-based human identification process significantly reduces processing time while delivering reliable results.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Jena

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3