Abstract
AbstractComputer Vision (CV)-based human identification using orthopantomograms (OPGs) has the potential to identify unknown deceased individuals by comparing postmortem OPGs with a comprehensive antemortem CV database. However, the growing size of the CV database leads to longer processing times. This study aims to develop a standardized and reliable Convolutional Neural Network (CNN) for age estimation using OPGs and integrate it into the CV-based human identification process. The CNN was trained on 50,000 OPGs, each labeled with ages ranging from 2 to 89 years. Testing included three postmortem OPGs, 10,779 antemortem OPGs, and an additional set of 70 OPGs within the context of CV-based human identification. Integrating the CNN for age estimation into CV-based human identification process resulted in a substantial reduction of up to 96% in processing time for a CV database containing 105,251 entries. Age estimation accuracy varied between postmortem and antemortem OPGs, with a mean absolute error (MAE) of 2.76 ± 2.67 years and 3.26 ± 3.06 years across all ages, as well as 3.69 ± 3.14 years for an additional 70 OPGs. In conclusion, the incorporation of a CNN for age estimation in the CV-based human identification process significantly reduces processing time while delivering reliable results.
Funder
Deutsche Forschungsgemeinschaft
Universitätsklinikum Jena
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. INTERPOL. Disaster victim identification guide 2018. (Diakses).
2. Rötzscher, K. Forensische Zahnmedizin: Forensische Odonto-Stomatologie (Springer-Verlag, 2013).
3. Heinrich, A., Güttler, F. V., Schenkl, S., Wagner, R. & Teichgräber, U. K. M. Automatic human identification based on dental X-ray radiographs using computer vision. Sci. Rep. 10, 3801. https://doi.org/10.1038/s41598-020-60817-6 (2020).
4. Heinrich, A. et al. Forensic odontology: Automatic identification of persons comparing antemortem and postmortem panoramic radiographs using computer vision. RoFo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 190, 1152–1158 (2018).
5. Aliyev, R., Arslanoglu, E., Yasa, Y. & Oktay, A. B. Age Estimation from Pediatric Panoramic Dental Images with CNNs and LightGBM. 2022 Medical Technologies Congress (TIPTEKNO), 1–4 (2022).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献