Functionalization of eggshell membranes with CuO–ZnO based p–n junctions for visible light induced antibacterial activity against Escherichia coli

Author:

Preda Nicoleta,Costas Andreea,Beregoi Mihaela,Apostol Nicoleta,Kuncser Andrei,Curutiu Carmen,Iordache Florin,Enculescu Ionut

Abstract

AbstractBiopolymers provide versatile platforms for designing naturally-derived wound care dressings through eco-friendly pathways. Eggshell membrane (ESM), a widely available, biocompatible biopolymer based structure features a unique 3D porous interwoven fibrous protein network. The ESM was functionalized with inorganic compounds (Ag, ZnO, CuO used either separately or combined) using a straightforward deposition technique namely radio frequency magnetron sputtering. The functionalized ESMs were characterized from morphological, structural, compositional, surface chemistry, optical, cytotoxicity and antibacterial point of view. It was emphasized that functionalization with a combination of metal oxides and exposure to visible light results in a highly efficient antibacterial activity against Escherichia coli when compared to the activity of individual metal oxide components. It is assumed that this is possible due to the fact that an axial p–n junction is created by joining the two metal oxides. This structure separates into components the charge carrier pairs promoted by visible light irradiation that further can influence the generation of reactive oxygen species which ultimately are responsible for the bactericide effect. This study proves that, by employing inexpensive and environmentally friendly materials (ESM and metal oxides) and fabrication techniques (radio frequency magnetron sputtering), affordable antibacterial materials can be developed for potential applications in chronic wound healing device area.

Funder

Ministry of Education and Research, Romania

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3