Identifying a suitable model for predicting hourly pollutant concentrations by using low-cost microstation data and machine learning

Author:

Yang Rongjin,Yin Lizeyan,Hao Xuejie,Liu Lu,Wang Chen,Li Xiuhong,Liu Qiang

Abstract

AbstractAccurately predicting the concentration of PM2.5 (fine particles with a diameter of 2.5 μm or less) is essential for health risk assessment and formulation of air pollution control strategies. At present, there is also a large amount of air pollution data. How to efficiently mine its hidden features to obtain the future concentration of pollutants is very important for the prevention and control of air pollution. Therefore we build a pollutant prediction model based on Lightweight Gradient Boosting Model (LightGBM) shallow machine learning and Long Short-Term Memory (LSTM) neural network. Firstly, the PM2.5 pollutant concentration data of 34 air quality stations in Beijing and the data of 18 weather stations were matched in time and space to obtain an input data set. Subsequently, the input data set was cleaned and preprocessed, and the training set was obtained by methods such as input feature extraction, input factor normalization, and data outlier processing. The hourly PM2.5 concentration value prediction was achieved in accordance with experiments conducted with the hourly PM2.5 data of Beijing from January 1, 2018 to October 1, 2020. Ultimately, the optimal hourly series prediction results were obtained after model comparisons. Through the comparison of these two models, it is found that the RMSE predicted by LSTM model for each pollutant is nearly 50% lower than that of LightGBM, and is more consistent with the fitting curve between the actual observations. The exploration of the input step size of LSTM model found that the accuracy of 3-h input data was higher than that of 12-h input data. It can be used for the management and decision-making of environmental protection departments and the formulation of preventive measures for emergency pollution incidents.

Funder

the Watershed Non-point Source Pollution Prevention and Control Technology and Application Demonstration Project

the National Key Research and Development Project

the Natural Science Foundation of China Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3