Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate

Author:

El Masri BassilORCID,Schwalm Christopher,Huntzinger Deborah N.,Mao JiafuORCID,Shi Xiaoying,Peng ChanghuiORCID,Fisher Joshua B.,Jain Atul K.ORCID,Tian HanqinORCID,Poulter BenjaminORCID,Michalak Anna M.ORCID

Abstract

Abstract Terrestrial ecosystems carbon and water cycles are tightly coupled through photosynthesis and evapotranspiration processes. The ratios of carbon stored to carbon uptake and water loss to carbon gain are key ecophysiological indicators essential to assess the magnitude and response of the terrestrial plant to the changing climate. Here, we use estimates from 10 terrestrial ecosystem models to quantify the impacts of climate, atmospheric CO2 concentration, and nitrogen (N) deposition on water use efficiency (WUE), and carbon use efficiency (CUE). We find that across models, WUE increases over the 20th Century particularly due to CO2 fertilization and N deposition and compares favorably to experimental studies. Also, the results show a decrease in WUE with climate for the last 3 decades, in contrasts with up-scaled flux observations that demonstrate a constant WUE. Modeled WUE responds minimally to climate with modeled CUE exhibiting no clear trend across space and time. The divergence between simulated and observationally-constrained WUE and CUE is driven by modeled NPP and autotrophic respiration, nitrogen cycle, carbon allocation, and soil moisture dynamics in current ecosystem models. We suggest that carbon-modeling community needs to reexamine stomatal conductance schemes and the soil-vegetation interactions for more robust modeling of carbon and water cycles.

Funder

National Aeronautics and Space Administration

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

NASA | Jet Propulsion Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3