An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding

Author:

Nakagome ShoORCID,Luu Trieu PhatORCID,He YongtianORCID,Ravindran Akshay Sujatha,Contreras-Vidal Jose L.

Abstract

AbstractPrevious studies of Brain Computer Interfaces (BCI) based on scalp electroencephalography (EEG) have demonstrated the feasibility of decoding kinematics for lower limb movements during walking. In this computational study, we investigated offline decoding analysis with different models and conditions to assess how they influence the performance and stability of the decoder. Specifically, we conducted three computational decoding experiments that investigated decoding accuracy: (1) based on delta band time-domain features, (2) when downsampling data, (3) of different frequency band features. In each experiment, eight different decoder algorithms were compared including the current state-of-the-art. Different tap sizes (sample window sizes) were also evaluated for a real-time applicability assessment. A feature of importance analysis was conducted to ascertain which features were most relevant for decoding; moreover, the stability to perturbations was assessed to quantify the robustness of the methods. Results indicated that generally the Gated Recurrent Unit (GRU) and Quasi Recurrent Neural Network (QRNN) outperformed other methods in terms of decoding accuracy and stability. Previous state-of-the-art Unscented Kalman Filter (UKF) still outperformed other decoders when using smaller tap sizes, with fast convergence in performance, but occurred at a cost to noise vulnerability. Downsampling and the inclusion of other frequency band features yielded overall improvement in performance. The results suggest that neural network-based decoders with downsampling or a wide range of frequency band features could not only improve decoder performance but also robustness with applications for stable use of BCIs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3