Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle

Author:

Escudero Sanchez Lorena,Rundo Leonardo,Gill Andrew B.,Hoare Matthew,Mendes Serrao Eva,Sala Evis

Abstract

AbstractRadiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria and further validation of feature robustness with respect to imaging acquisition parameters. In this paper, the robustness of radiomic features extracted from computed tomography (CT) images is evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels and correcting for the dependency on volume. With the optimal values and corrections, feature values are compared across thicknesses to identify reproducible features. Normalisation using muscle regions is also described as an alternative approach. With either method, a large fraction of features (75–90%) was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using variable slice thickness.

Funder

Cancer Research UK

Mark Foundation For Cancer Research

Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3