An expanded RT-PCR melting temperature coding assay to rapidly identify all known SARS-CoV-2 variants and sub-variants of concern

Author:

Banada Padmapriya P.,Green Raquel,Streck Deanna,Kurvathi Rohini,Reiss Robert,Banik Sukalyani,Daivaa Naranjargal,Montalvan Ibsen,Jones Robert,Marras Salvatore A. E.,Chakravorty Soumitesh,Alland David

Abstract

AbstractThe continued emergence of vaccine-resistant SARS-CoV-2 variants of concern (VOC) requires specific identification of each VOC as it arises. Here, we report an expanded version of our previously described sloppy molecular beacon (SMB) melting temperature (Tm) signature-based assay for VOCs, now modified to include detection of Delta (B.1.617.2) and Omicron (B.1.1.529) sub-variants. The SMB-VOC assay targets the signature codons 501, 484 and 452 in the SARS-CoV-2 spike protein which we show can specifically detect and differentiate all known VOCs including the Omicron subvariants (BA.1, BA.2, BA.2.12.1, BA.4/BA.5). The limit of detection (LOD) of the assay was 20, 22 and 36 genomic equivalents (GE) per reaction with the Delta, Omicron BA.1 and BA.2 respectively. Clinical validation of the 3-codon assay in the LC480 instrument showed the assay detected 94% (81/86) of the specimens as WT or VOCs and 6% (5/86) of the tests producing indeterminate results compared to sequencing. Sanger sequencing also failed for four samples. None of the specimens were incorrectly identified as WT or as a different VOC by our assay. Thus, excluding specimens with indeterminant results, the assay was 100% sensitive and 100% specific compared to Sanger sequencing for variant identification. This new assay concept can be easily expanded to add newer variants and can serve as a robust diagnostic tool for selecting appropriate monoclonal antibody therapy and rapid VOC surveillance.

Funder

National Institutes of Health

Rutgers, The State University of New Jersey

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3