Author:
Giró Benet Judit,Seo Minjun,Khine Michelle,Gumà Padró Josep,Pardo Martnez Antonio,Kurdahi Fadi
Abstract
AbstractA rising number of authors are drawing evidence on the diagnostic capacity of specific volatile organic compounds (VOCs) resulting from some body fluids. While cancer incidence in society is on the rise, it becomes clear that the analysis of these VOCs can yield new strategies to mitigate advanced cancer incidence rates. This paper presents the methodology implemented to test whether a device consisting of an electronic nose inspired by a dog’s olfactory system and olfactory neurons is significantly informative to detect breast cancer (BC). To test this device, 90 human urine samples were collected from control subjects and BC patients at a hospital. To test this system, an artificial intelligence-based classification algorithm was developed. The algorithm was firstly trained and tested with data resulting from gas chromatography-mass spectrometry (GC–MS) urine readings, leading to a classification rate of 92.31%, sensitivity of 100.00%, and specificity of 85.71% (N = 90). Secondly, the same algorithm was trained and tested with data obtained with our eNose prototype hardware, and class prediction was achieved with a classification rate of 75%, sensitivity of 100%, and specificity of 50%.
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献