Strain driven phase transition and mechanism for Fe/Ir(111) films

Author:

Hsieh Chen-Yuan,Jiang Pei-Cheng,Chen Wei-Hsiang,Tsay Jyh-Shen

Abstract

AbstractBy way of introducing heterogeneous interfaces, the stabilization of crystallographic phases is critical to a viable strategy for developing materials with novel characteristics, such as occurrence of new structure phase, anomalous enhancement in magnetic moment, enhancement of efficiency as nanoportals. Because of the different lattice structures at the interface, heterogeneous interfaces serve as a platform for controlling pseudomorphic growth, nanostructure evolution and formation of strained clusters. However, our knowledge related to the strain accumulation phenomenon in ultrathin Fe layers on face-centered cubic (fcc) substrates remains limited. For Fe deposited on Ir(111), here we found the existence of strain accumulation at the interface and demonstrate a strain driven phase transition in which fcc-Fe is transformed to a bcc phase. By substituting the bulk modulus and the shear modulus and the experimental results of lattice parameters in cubic geometry, we obtain the strain energy density for different Fe thicknesses. A limited distortion mechanism is proposed for correlating the increasing interfacial strain energy, the surface energy, and a critical thickness. The calculation shows that the strained layers undergo a phase transition to the bulk structure above the critical thickness. The results are well consistent with experimental measurements. The strain driven phase transition and mechanism presented herein provide a fundamental understanding of strain accumulation at the bcc/fcc interface.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3