Author:
Röding Magnus,Ma Zheng,Torquato Salvatore
Abstract
AbstractQuantitative structure–property relationships are crucial for the understanding and prediction of the physical properties of complex materials. For fluid flow in porous materials, characterizing the geometry of the pore microstructure facilitates prediction of permeability, a key property that has been extensively studied in material science, geophysics and chemical engineering. In this work, we study the predictability of different structural descriptors via both linear regressions and neural networks. A large data set of 30,000 virtual, porous microstructures of different types, including both granular and continuous solid phases, is created for this end. We compute permeabilities of these structures using the lattice Boltzmann method, and characterize the pore space geometry using one-point correlation functions (porosity, specific surface), two-point surface-surface, surface-void, and void-void correlation functions, as well as the geodesic tortuosity as an implicit descriptor. Then, we study the prediction of the permeability using different combinations of these descriptors. We obtain significant improvements of performance when compared to a Kozeny-Carman regression with only lowest-order descriptors (porosity and specific surface). We find that combining all three two-point correlation functions and tortuosity provides the best prediction of permeability, with the void-void correlation function being the most informative individual descriptor. Moreover, the combination of porosity, specific surface, and geodesic tortuosity provides very good predictive performance. This shows that higher-order correlation functions are extremely useful for forming a general model for predicting physical properties of complex materials. Additionally, our results suggest that artificial neural networks are superior to the more conventional regression methods for establishing quantitative structure–property relationships. We make the data and code used publicly available to facilitate further development of permeability prediction methods.
Funder
Vetenskapsrådet
Svenska Forskningsrådet Formas
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2013).
2. Vasseur, J., Wadsworth, F. B. & Dingwell, D. B. Permeability of polydisperse magma foam. Geology 48(6), 536–540 (2020).
3. Silvestre, C., Duraccio, D. & Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36, 1766–1782 (2011).
4. Slater, A. & Cooper, A. Function-led design of new porous materials. Science 348, aaa8075 (2015).
5. Stamenkovic, V., Strmcnik, D., Lopes, P. & Markovic, N. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献