Abstract
AbstractCentromeres exert an inhibitory effect on meiotic recombination, but the possible contribution of satellite DNA to this “centromere effect” is under debate. In the horse, satellite DNA is present at all centromeres with the exception of the one from chromosome 11. This organization of centromeres allowed us to investigate the role of satellite DNA on recombination suppression in horse spermatocytes at the stage of pachytene. To this aim we analysed the distribution of the MLH1 protein, marker of recombination foci, relative to CENP-A, marker of centromeric function. We demonstrated that the satellite-less centromere of chromosome 11 causes crossover suppression, similarly to satellite-based centromeres. These results suggest that the centromere effect does not depend on satellite DNA. During this analysis, we observed a peculiar phenomenon: while, as expected, the centromere of the majority of meiotic bivalent chromosomes was labelled with a single immunofluorescence centromeric signal, double-spotted or extended signals were also detected. Their number varied from 0 to 7 in different cells. This observation can be explained by positional variation of the centromeric domain on the two homologs and/or misalignment of pericentromeric satellite DNA arrays during homolog pairing confirming the great plasticity of equine centromeres.
Funder
Science Foundation Ireland
Ministerio de Economía y Competitividad
Consiglio Nazionale delle Ricerche
Ministero dell'Istruzione, dell'Università e della Ricerca
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献