Immunogenic cell death-related classification reveals prognosis and effectiveness of immunotherapy in breast cancer

Author:

Zhu Lei,Wu Yanmei,Zhao Haichun,Guo Zicheng,Bo Biao,Zheng Li

Abstract

AbstractLack of specific biomarkers and effective drug targets constrains therapeutic research in breast cancer (BC). In this regard, therapeutic modulation of damage-associated molecular patterns (DAMPs)-induced immunogenic cell death (ICD) may help improve the effect of immunotherapy in individuals with BC. The aim of this investigation was to develop biomarkers for ICD and to construct ICD-related risk estimation models to predict prognosis and immunotherapy outcomes of BC. RNA-seq transcriptome information and medical data from individuals with BC (n = 943) were obtained from TCGA. Expression data from a separate BC cohort (GEO: GSE20685) were used for validation. We identified subtypes of high and low ICD gene expression by consensus clustering and assessed the connection between ICD subtypes and tumor microenvironment (TME). In addition, different algorithms were used to construct ICD-based prognostic models of BC. BC samples were categorized into subtypes of high and low ICD expression depending on the expression of genes correlated with ICD. The subtype of ICD high-expression subtypes are correlated with poor prognosis in breast cancer, while ICD low-expression subtypes may predict better clinical outcomes. We also created and verified a predictive signature model depending on four ICD-related genes (ATG5, CD8A, CD8B, and HSP90AA1), which correlates with TME status and predicts clinical outcomes of BC patients. We highlight the connection of ICD subtypes with the dynamic evolution of TME in BC and present a novel ICD-based prognostic model of BC. In clinical practice, distinction of ICD subtype and assessment of ICD-related biomarkers should help guide treatment planning and improve the effectiveness of tumor immunotherapy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3