Effect of contact resistance on the electrical conductivity of polymer graphene nanocomposites to optimize the biosensors detecting breast cancer cells

Author:

Zare Yasser,Rhee Kyong Yop

Abstract

AbstractThis study focuses on the contact regions among neighboring nanoparticles in polymer graphene nanocomposites by the extension of nanosheets. The resistance of graphene and the contact zones represent the total resistance of the prolonged nanosheets. Furthermore, the graphene size, interphase depth, and tunneling distance express the effective volume portion of graphene, while the onset of percolation affects the fraction of percolated nanosheets. Finally, a model is developed to investigate the conductivity of the samples using the graphene size, interphase depth, and tunneling size. In addition to the roles played by certain factors in conductivity, the experimental conductivity data for several samples confirm the conductivity predictions. Generally, the polymer sheet in tunnels determines the total resistance of the extended nanosheets because graphene ordinarily exhibits negligible resistance. In addition, a large tunnel positively accelerates the onset of percolation, but increases the tunneling resistance and attenuates the conductivity of the nanocomposite. Further, a thicker interphase and lower percolation threshold promote the conductivity of the system. The developed model can be applied to optimize the biosensors detecting the breast cancer cells.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3