Author:
Kuwabara Masashi,Ikawa Fusao,Sakamoto Shigeyuki,Okazaki Takahito,Ishii Daizo,Hosogai Masahiro,Maeda Yuyo,Chiku Masaaki,Kitamura Naoyuki,Choppin Antoine,Takamiya Daisaku,Shimahara Yuki,Nakayama Takeo,Kurisu Kaoru,Horie Nobutaka
Abstract
AbstractDiagnostic image analysis for unruptured cerebral aneurysms using artificial intelligence has a very high sensitivity. However, further improvement is needed because of a relatively high number of false positives. This study aimed to confirm the clinical utility of tuning an artificial intelligence algorithm for cerebral aneurysm diagnosis. We extracted 10,000 magnetic resonance imaging scans of participants who underwent brain screening using the “Brain Dock” system. The sensitivity and false positives/case for aneurysm detection were compared before and after tuning the algorithm. The initial diagnosis included only cases for which feedback to the algorithm was provided. In the primary analysis, the sensitivity of aneurysm diagnosis decreased from 96.5 to 90% and the false positives/case improved from 2.06 to 0.99 after tuning the algorithm (P < 0.001). In the secondary analysis, the sensitivity of aneurysm diagnosis decreased from 98.8 to 94.6% and the false positives/case improved from 1.99 to 1.03 after tuning the algorithm (P < 0.001). The false positives/case reduced without a significant decrease in sensitivity. Using large clinical datasets, we demonstrated that by tuning the algorithm, we could significantly reduce false positives with a minimal decline in sensitivity.
Funder
Pfizer Health Research Foundation of Japan
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献