Machine learning-based anomaly detection of groundwater microdynamics: case study of Chengdu, China

Author:

Shi Haoxin,Guo Jian,Deng Yuandong,Qin Zixuan

Abstract

AbstractDetection of subsurface hydrodynamic anomalies plays a significant role in groundwater resource management and environmental monitoring. In this paper, based on data from the groundwater level, atmospheric pressure, and precipitation in the Chengdu area of China, a method for detecting outliers considering the factors affecting groundwater levels is proposed. By analyzing the factors affecting groundwater levels in the monitoring site and eliminating them, simplified groundwater data is obtained. Applying sl-Pauta (self-learning-based Pauta), iForest (Isolated Forest), OCSVM (One-Class SVM), and KNN to synthetic data with known outliers, testing and evaluating the effectiveness of 4 technologies. Finally, the four methods are applied to the detection of outliers in simplified groundwater levels. The results show that in the detection of outliers in synthesized data, the OCSVM method has the best detection performance, with a precision rate of 88.89%, a recall rate of 91.43%, an F1 score of 90.14%, and an AUC value of 95.66%. In the detection of outliers in simplified groundwater levels, a qualitative analysis of the displacement data within the field of view indicates that the outlier detection performance of iForest and OCSVM is better than that of KNN. The proposed method for considering the factors affecting groundwater levels can improve the efficiency and accuracy of detecting outliers in groundwater level data.

Funder

the National Natural Science Foundation of China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3