Characterization of HA-tagged α9 and α10 nAChRs in the mouse cochlea

Author:

Vyas Pankhuri,Wood Megan Beers,Zhang Yuanyuan,Goldring Adam C.,Chakir Fatima-Zahra,Fuchs Paul Albert,Hiel Hakim

Abstract

AbstractNeurons of the medial olivary complex inhibit cochlear hair cells through the activation of α9α10-containing nicotinic acetylcholine receptors (nAChRs). Efforts to study the localization of these proteins have been hampered by the absence of reliable antibodies. To overcome this obstacle, CRISPR-Cas9 gene editing was used to generate mice in which a hemagglutinin tag (HA) was attached to the C-terminus of either α9 or α10 proteins. Immunodetection of the HA tag on either subunit in the organ of Corti of adult mice revealed immunopuncta clustered at the synaptic pole of outer hair cells. These puncta were juxtaposed to immunolabeled presynaptic efferent terminals. HA immunopuncta also occurred in inner hair cells of pre-hearing (P7) but not in adult mice. These immunolabeling patterns were similar for both homozygous and heterozygous mice. All HA-tagged genotypes had auditory brainstem responses not significantly different from those of wild type littermates. The activation of efferent neurons in heterozygous mice evoked biphasic postsynaptic currents not significantly different from those of wild type hair cells. However, efferent synaptic responses were significantly smaller and less frequent in the homozygous mice. We show that HA-tagged nAChRs introduced in the mouse by a CRISPR knock-in are regulated and expressed like the native protein, and in the heterozygous condition mediate normal synaptic function. The animals thus generated have clear advantages for localization studies.

Funder

David M. Rubenstein Research Professorship and Hearing Research Fund

Foundation for the National Institutes of Health

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3