All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources

Author:

Lalbakhsh Ali,Afzal Muhammad U.,Hayat Touseef,Esselle Karu P.,Mandal Kaushik

Abstract

AbstractElectromagnetic (EM) metasurfaces are essential in a wide range of EM engineering applications, from incorporated into antenna designs to separate devices like radome. Near-field manipulators are a class of metasurfaces engineered to tailor an EM source’s radiation patterns by manipulating its near-field components. They can be made of all-dielectric, hybrid, or all-metal materials; however, simultaneously delivering a set of desired specifications by an all-metal structure is more challenging due to limitations of a substrate-less configuration. The existing near-field phase manipulators have at least one of the following limitations; expensive dielectric-based prototyping, subject to ray tracing approximation and conditions, narrowband performance, costly manufacturing, and polarization dependence. In contrast, we propose an all-metal wideband phase correcting structure (AWPCS) with none of these limitations and is designed based on the relative phase error extracted by post-processing the actual near-field distributions of any EM sources. Hence, it is applicable to any antennas, including those that cannot be accurately analyzed with ray-tracing, particularly for near-field analysis. To experimentally verify the wideband performance of the AWPCS, a shortened horn antenna with a large apex angle and a non-uniform near-field phase distribution is used as an EM source for the AWPCS. The measured results verify a significant improvement in the antenna’s aperture phase distribution in a large frequency band of 25%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3