Flow study of Dean’s instability in high aspect ratio microchannels

Author:

Wong Yu Ching,Dai Cheng,Xian Qingyue,Yan Zhaoxu,Zhang Ziyi,Wen Weijia

Abstract

AbstractDean’s flow and Dean’s instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean’s flow only. This work first reports the Dean’s instability flow in high aspect ratio channels on the deka-microns level for $$De>162$$ D e > 162 . A new channel geometry (the tortuous channel), which creates a rolled-up velocity profile, is presented and studied experimentally and numerically along with other three typical channel geometries at Dean’s flow condition and Dean’s instability condition. The tortuous channel generates a higher De environment at the same Re compared to the other channels and allows easier Dean’s instability creation. We further demonstrate the use of multiple vortexes for mixing. The mixing efficiency is considered among different channel patterns and the tortuous channel outperforms the others. This work offers more understanding of the creation of Dean’s instability at high aspect ratio channels and the effect of channel geometry on it. Ultimately, it demonstrates the potential for applications like mixing and cell sorting.

Funder

Hong Kong Innovation and Technology Fund

The Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3