Wave discrimination at C-band frequencies in microstrip structures inspired by electromagnetically induced transparency

Author:

Jabbar Abdul,Ramzan Rashad,Siddiqui Omar,Amin Muhammad,Tahir Farooq A.

Abstract

AbstractWe present the design and practical implementation of a microstrip diplexer based on the wave discrimination property associated with the electromagnetically induced transparency (EIT)-like effect. The EIT is a quantum interference phenomenon which happens between two atomic transition pathways and allows wave propagation within a medium’s absorption spectrum. Here, we exploit an analogous interference mechanism in a three-port microstrip structure to demonstrate a diplexer based on the EIT-like effect in the microwave regime. Since the transparency is accompanied by a high transmission and strong dispersion characteristics, compact frequency discriminating structures that can resolve nearby frequencies with high isolation can be devised. Our proposed C-band diplexer consists of pairs of unequal open-circuit stubs, which resonate at detuned frequencies and interfere to form the EIT-like passbands for diplexer action. The design is highly compact and scalable in frequency for both PCB and on-chip applications. A prototype of diplexer is fabricated for the center frequencies of lower and upper passbands at 4.6 GHz and 5.5 GHz respectively. The transmission zeros are designed at the complementary channels so that the two passbands are highly isolated presenting the isolation of about 40 dB. The measured insertion loss of lower and upper passband is 0.59 dB and 0.61 dB respectively. Measured input return loss is better than − 15 dB, while the output return losses are well below − 12 dB. Moreover, a decent value of about 200 is achieved for the group refractive index around the EIT-like passbands, which reveals the slow wave characteristics of the proposed EIT-based diplexer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3