Author:
Park Jeongbin,Knight Bradford G.,Liao Yingqian,Mangano Marco,Pacini Bernardo,Maki Kevin J.,Martins Joaquim R. R. A.,Sun Jing,Pan Yulin
Abstract
AbstractHydrokinetic turbines extract kinetic energy from moving water to generate renewable electricity, thus contributing to sustainable energy production and reducing reliance on fossil fuels. It has been hypothesized that a duct can accelerate and condition the fluid flow passing the turbine blades, improving the overall energy extraction efficiency. However, no substantial evidence has been provided so far for hydrokinetic turbines. To investigate this problem, we perform a CFD-based optimization study with a blade-resolved Reynolds-averaged Navier–Stokes (RANS) solver to explore the design of a ducted hydrokinetic turbine that maximizes the efficiency of energy extraction. A gradient-based optimization approach is utilized to effectively deal with the high-dimensional design space of the blade and duct geometry, with gradients being calculated through the adjoint method. The final design is re-evaluated through higher-fidelity unsteady RANS (URANS) simulations. Our optimized ducted turbine achieves an efficiency of about 54% over a range of operating conditions, higher than the typical 46% efficiency of unducted turbines.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献