Efficient processing of top-k frequent spatial keyword queries

Author:

Xu Tao,Xu Aopeng,Mango Joseph,Liu Pengfei,Ma Xiaqing,Zhang Lei

Abstract

AbstractThe rapid popularization of high-speed mobile communication technology and the continuous development of mobile network devices have given spatial textual big data (STBD) new dimensions due to their ability to record geographical objects from multiple sources and with complex attributes. Data mining from spatial textual datasets has become a meaningful study. As a popular topic for STBD, the top-k spatial keyword query has been developed in various forms to deal with different retrievals requirements. However, previous research focused mainly on indexing locational attributes and retrievals of few target attributes, and these correlations between large numbers of the textual attributes have not been fully studied and demonstrated. To further explore interrelated-knowledge in the textual attributes, this paper defines the top-k frequent spatial keyword query (tfSKQ) and proposes a novel hybrid index structure, named RCL-tree, based on the concept lattice theory. We also develop the tfSKQ algorithms to retrieve the most frequent and nearest spatial objects in STBD. One existing method and two baseline algorithms are implemented, and a series of experiments are carried out using real datasets to evaluate its performance. Results demonstrated the effectiveness and efficiency of the proposed RCL-tree in tfSKQ with the complex spatial multi keyword query conditions.

Funder

The Science and Technology Development Project of Henan Province, China

the Open Fund of Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Top-k Frequent Itemset Mining on Massive Data;Data Science and Engineering;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3