Simulation acceleration for transmittance of electromagnetic waves in 2D slit arrays using deep learning

Author:

Kim Wonsuk,Seok Junhee

Abstract

AbstractWhen designing new optical devices, many simulations must be conducted to determine the optimal design parameters. Therefore, fast and accurate simulations are essential for designing optical devices. In this work, we introduce a deep learning approach that accelerates a simulator solving frequency-domain Maxwell equations. Our model achieves high accuracy while predicting transmittance per wavelength in 2D slit arrays under certain conditions to achieve 160,000 times faster results than the simulator. We generated a dataset using an open-source simulator and compared its performance with those of other machine learning models. Additionally, we propose a new loss function and performance evaluation method for creating better performance models with multiple regression outputs from one input source. We observed that using a loss function that adds binary cross-entropy loss, which predicts whether the differential of the transmittance is positive or negative at wavelengths adjacent to the root mean-squared error of the transmittance value, is more effective for predicting variations in multiple regression outputs. The simulation results show that a four-layer convolutional neural network model demonstrates the best accuracy (R2 score: 0.86). The overall approach presented here is expected to be useful for simulating and designing optical devices.

Funder

National Research Foundation of Korea

Samsung Electronics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference34 articles.

1. LeCun, Y. & Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361, 1995 (1995).

2. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 1097–1105 (2012).

3. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 580–587 (2014).

4. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, 1440–1448 (2015).

5. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 91–99 (2015).

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3