Author:
Barbosa Marta O.,Ribeiro Rui S.,Ribeiro Ana R. L.,Pereira M. Fernando R.,Silva Adrián M. T.
Abstract
AbstractPristine and functionalized multi-walled carbon nanotubes (MWCNTs) were investigated as adsorbent materials inside solid-phase extraction (SPE) cartridges for extraction and preconcentration of 8 EU-relevant organic micropollutants (with different pKa and polarity) before chromatographic analysis of surface water. The recoveries obtained were > 60% for 5/8 target pollutants (acetamiprid, atrazine, carbamazepine, diclofenac, and isoproturon) using a low amount of this reusable adsorbent (50 mg) and an eco-friendly solvent (ethanol) for both conditioning and elution steps. The introduction of oxygenated surface groups in the carbon nanotubes by using a controlled HNO3 hydrothermal oxidation method, considerably improved the recoveries obtained for PFOS (perfluorooctanesulfonic acid) and methiocarb, which was ascribed to the hydrogen bond adsorption mechanism, but decreased those observed for the pesticide acetamiprid and for two pharmaceuticals (carbamazepine and diclofenac), suggesting π–π dispersive interactions. Moreover, a good correlation was found between the recovery obtained for methiocarb and the amount of oxygenated surface groups on functionalized MWCNTs, which was mainly attributed to the increase of phenols and carbonyl and quinone groups. Thus, the HNO3 hydrothermal oxidation method can be used to finely tune the surface chemistry (and texture) of MWCNTs according to the specific micropollutants to be extracted and quantified in real water samples.
Funder
Fundação para a Ciência e a Tecnologia
European Regional Development Fund
Programa Operacional Temático Factores de Competitividade
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献