Author:
Benson Eric E.,Ha Mai-Anh,Gregg Brian. A.,van de Lagemaat Jao,Neale Nathan R.,Svedruzic Drazenka
Abstract
Abstract
We report the ability to tune the catalytic activities for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by applying mechanical stress on a highly n-type doped rutile TiO2 films. We demonstrate through operando electrochemical experiments that the low HER activity of TiO2 can reversibly approach those of the state-of-the-art non-precious metal catalysts when the TiO2 is under tensile strain. At 3% tensile strain, the HER overpotential required to generate a current density of 1 mA/cm2 shifts anodically by 260 mV to give an onset potential of 125 mV, representing a drastic reduction in the kinetic overpotential. A similar albeit smaller cathodic shift in the OER overpotential is observed when tensile strain is applied to TiO2. Results suggest that significant improvements in HER and OER activities with tensile strain are due to an increase in concentration of surface active sites and a decrease in kinetic and thermodynamics barriers along the reaction pathway(s). Our results highlight that strain applied to TiO2 by precisely controlled and incrementally increasing (i.e. dynamic) tensile stress is an effective tool for dynamically tuning the electrocatalytic properties of HER and OER electrocatalysts relative to their activities under static conditions.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献