Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts

Author:

Fuentes Alejandra M.,Narayan Apurva,Milligan Kirsty,Lum Julian J.,Brolo Alex G.,Andrews Jeffrey L.,Jirasek Andrew

Abstract

AbstractTumour cells exhibit altered metabolic pathways that lead to radiation resistance and disease progression. Raman spectroscopy (RS) is a label-free optical modality that can monitor post-irradiation biomolecular signatures in tumour cells and tissues. Convolutional Neural Networks (CNN) perform automated feature extraction directly from data, with classification accuracy exceeding that of traditional machine learning, in cases where data is abundant and feature extraction is challenging. We are interested in developing a CNN-based predictive model to characterize clinical tumour response to radiation therapy based on their degree of radiosensitivity or radioresistance. In this work, a CNN architecture is built for identifying post-irradiation spectral changes in Raman spectra of tumour tissue. The model was trained to classify irradiated versus non-irradiated tissue using Raman spectra of breast tumour xenografts. The CNN effectively classified the tissue spectra, with accuracies exceeding 92.1% for data collected 3 days post-irradiation, and 85.0% at day 1 post-irradiation. Furthermore, the CNN was evaluated using a leave-one-out- (mouse, section or Raman map) validation approach to investigate its generalization to new test subjects. The CNN retained good predictive accuracy (average accuracies 83.7%, 91.4%, and 92.7%, respectively) when little to no information for a specific subject was given during training. Finally, the classification performance of the CNN was compared to that of a previously developed model based on group and basis restricted non-negative matrix factorization and random forest (GBR-NMF-RF) classification. We found that CNN yielded higher classification accuracy, sensitivity, and specificity in mice assessed 3 days post-irradiation, as compared with the GBR-NMF-RF approach. Overall, the CNN can detect biochemical spectral changes in tumour tissue at an early time point following irradiation, without the need for previous manual feature extraction. This study lays the foundation for developing a predictive framework for patient radiation response monitoring.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3