Prediction of disulfide bond engineering sites using a machine learning method

Author:

Gao Xiang,Dong Xiaoqun,Li Xuanxuan,Liu Zhijie,Liu Haiguang

Abstract

AbstractDisulfide bonds are covalently bonded sulfur atoms from cysteine pairs in protein structures. Due to the importance of disulfide bonds in protein folding and structural stability, artificial disulfide bonds are often engineered by cysteine mutation to enhance protein structural stability. To facilitate the experimental design, we implemented a method based on neural networks to predict amino acid pairs for cysteine mutations to form engineered disulfide bonds. The designed neural network was trained with high-resolution structures curated from the Protein Data Bank. The testing results reveal that the proposed method recognizes 99% of natural disulfide bonds. In the test with engineered disulfide bonds, the algorithm achieves similar accuracy levels with other state-of-the-art algorithms in published dataset and better performance for two comprehensively studied proteins with 70% accuracy, demonstrating potential applications in protein engineering. The neural network framework allows exploiting the full features in distance space, and therefore improves accuracy of the disulfide bond engineering site prediction. The source code and a web server are available at http://liulab.csrc.ac.cn/ssbondpre.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3