Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects

Author:

Sresakoolchai Jessada,Kaewunruen Sakdirat

Abstract

AbstractRailway maintenance is a complex and complicated task in the railway industry due to the number of its components and relationships. Ineffective railway maintenance results in excess cost, defective railway structure and components, longer possession time, poorer safety, and lower passenger comfort. Of the three main maintenance approaches, predictive maintenance is the trendy one, and is proven that it provides the highest efficiency. However, the implementation of predictive maintenance for the railway industry cannot be done without an efficient tool. Normally, railway maintenance is corrective when some things fail or preventive when maintenance is routine. A novel approach using an integration between deep reinforcement learning and digital twin is proposed in this study to improve the efficiency of railway maintenance which other techniques such as supervised and unsupervised learning cannot provide. In the study, Advantage Actor Critic (A2C) is used to develop a reinforcement learning model and agent to fulfill the need of the study. Real-world field data over four years and 30 km. is obtained and applied for developing the reinforcement learning model. Track geometry parameters, railway component defects, and maintenance activities are used as parameters to develop the reinforcement learning model. Rewards (or penalties) are calculated based on maintenance costs and occurring defects. The new breakthrough exhibits that using reinforcement learning integrated with digital twin can reduce maintenance activities by 21% and reduce the occurring defects by 68%. Novelties of the study are the use of A2C which is faster and provides better results than other traditional techniques such as Deep Q-learning (DQN), each track geometry parameter is considered without combining into a track quality index, filed data are used to develop the reinforcement learning model, and seven independent actions are included in the reinforcement learning model. This study is the world’s first to contribute a new guideline for applying reinforcement learning and digital twins to improve the efficiency of railway maintenance, reduce the number of defects, reduce the maintenance cost, reduce the possession time for railway maintenance, improve the overall safety of the railway operation, and improve the passenger comfort which can be seen from its results.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3