Biomechanical adaptations during exhaustive runs at 90 to 120% of peak aerobic speed

Author:

Patoz AurélienORCID,Blokker Thomas,Pedrani Nicola,Spicher Romain,Borrani FabioORCID,Malatesta DavideORCID

Abstract

AbstractThe aim of this study was to examine how running biomechanics (spatiotemporal and kinetic variables) adapt with exhaustion during treadmill runs at 90, 100, 110, and 120% of the peak aerobic speed (PS) of a maximal incremental aerobic test. Thirteen male runners performed a maximal incremental aerobic test on an instrumented treadmill to determine their PS. Biomechanical variables were evaluated at the start, mid, and end of each run until volitional exhaustion. The change of running biomechanics with fatigue was similar among the four tested speeds. Duty factor and contact and propulsion times increased with exhaustion (P ≤ 0.004; F ≥ 10.32) while flight time decreased (P = 0.02; F = 6.67) and stride frequency stayed unchanged (P = 0.97; F = 0.00). A decrease in vertical and propulsive peak forces were obtained with exhaustion (P ≤ 0.002; F ≥ 11.52). There was no change in the impact peak with exhaustion (P = 0.41; F = 1.05). For runners showing impact peaks, the number of impact peaks increased (P ≤ 0.04; $${\upchi }^{2}$$ χ 2  ≥ 6.40) together with the vertical loading rate (P = 0.005; F = 9.61). No changes in total, external, and internal positive mechanical work was reported with exhaustion (P ≥ 0.12; F ≤ 2.32). Results suggest a tendency towards a “smoother” vertical and horizontal running pattern with exhaustion. A smoother running pattern refers to the development of protective adjustments, leading to a reduction of the load applied to the musculoskeletal system at each running step. This transition seemed continuous between the start and end of the running trials and could be adopted by the runners to decrease the muscle force level during the propulsion phase. Despite these changes with exhaustion, there were no changes in either gesture speed (no alteration of stride frequency) or positive mechanical work, advocating that runners unconsciously organize themselves to maintain a constant whole-body mechanical work output.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3